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Abstract
This paper studies Randers metrics on homogeneous Riemannian manifolds.
It turns out that we can give a complete description of the invariant Randers
metrics on a homogeneous Riemannian manifold as well as the geodesics, the
flag curvatures. This result provides a convenient method to construct globally
defined Berwald space which is neither Riemannian nor locally Minkowskian
and gives another explanation of the example of Bao et al (1999 An Introduction
to Riemannian–Finsler Geometry (Berlin: Springer)).

PACS numbers: 02.40.Ky, 02.40.Sf

Introduction

Randers spaces were first introduced by Randers in 1941 [2], when he studied the metric
problems in the 4-space of general relativity. They also occur naturally in many other physical
applications, especially in electron optics. According to Ingarden’s account [3], the Lagrangian
of relativistic electrons gives rise to a Randers metric which involves the normalized versions of
the electric and magnetic potentials and the normalization involves the physical constants of
the theory. In geometry, they also provide a rich source of explicit examples of y-global
Berwald spaces, particularly those which are neither Riemannian nor locally Minkowskian.
Since they are most closely related to Riemannian metrics among the class of Finsler spaces,
many new geometric invariants are first computed for them (cf, for example, Bao and
Lackey [4]).

The construction of Randers space is not an easy task. By a theorem from the Japanese
school, in order to construct a Randers space of Berwald type which is neither Riemannian
nor Minkowskian, one must find a nonzero globally defined parallel 1-form on a Riemannian
manifold (cf [1]). This in general contains a tedious computation.

* Project supported by NSFC (no 10371057) and EYTP, MOE of China.

0305-4470/04/154353+08$30.00 © 2004 IOP Publishing Ltd Printed in the UK 4353

http://stacks.iop.org/ja/37/4353


4354 S Deng and Z Hou

This paper provides a convenient method to construct Randers metrics on homogeneous
Riemannian manifold. Let G/H be a homogeneous Riemannian manifold. Then we prove
that there exists a bijection between the set of all invariant Randers metrics with the underlying
Riemannian metric of G/H and the open ball of radius 1 of the subspace of invariants of the
adjoint action of H on the tangent space To(G/H) at the original of G/H . In general, the
corresponding Randers space is of Berwald type which is neither Riemannian nor locally
Minkowskian. In the mean time, we describe the geodesics and obtain a formula for the
computation of flag curvatures of these metrics. Our result provides many new interesting
examples of Finsler space of Berwald type and gives another explanation of the example
of [1].

1. Global expression of Randers metric

1.1. Let M be a smooth n-dimensional manifold. A Randers metric on M consists of a
Riemannian metric ã := ãij dxi ⊗ dxj on M and a 1-form b̃ := b̃i dxi . By ã and b̃ we define
a function F on T M

F(x, y) = α(x, y) + β(x, y) x ∈ M y ∈ Tx(M)

where α(x, y) = √
ãij yiyj , β(x, y) = b̃i (x)yi . F is a Finsler structure if and only if

‖b̃‖ :=
√

b̃i b̃i < 1 (1.1)

where b̃i = ãij b̃j , and (ãij ) is the inverse of the matrix (ãij ).
Here we introduce a global way to express a Randers metric on a Riemannian manifold,

which is convenient when we consider such structures on homogeneous Riemannian manifolds.
Let x ∈ M . Then the Riemannian metric induces an inner product in the cotangent space
T ∗

x (M) in a standard way. An easy computation shows that 〈dxi, dxj 〉 = ãij (x). This inner
product defines a linear isomorphism between T ∗

x (M) and Tx(M). In this way the 1-form b̃

corresponds to a smooth vector field b̃# on M. Let

b̃# = (b̃#)i∂/∂xi.

Then we have

(b̃#)i =
n∑

j=1

ãij b̃j = b̃i .

For any y ∈ Tx(M) we have

〈y, b̃#〉 =
〈
y,

(
n∑

j=1

ãij (x)b̃j

)
∂/∂xi

〉
= b̃i (x)yi = β(x, y).

It is obvious that ‖b̃‖ = ‖b̃#‖. Thus (1.1) holds if and only if ‖b̃#‖ < 1.
In summarizing,

Lemma 1.1. The Randers metric on a manifold consisting of a Riemannian metric

ã := ãij dxi ⊗ dxj

together with a smooth vector field b̃# with ã(x)(b̃#, b̃#) < 1,∀x ∈ M , is defined by

F(x, y) =
√

ã(x)(y, y) + ã(x)(b̃#, y) x ∈ M y ∈ Tx(M).

1.2. A theorem from the Japanese school asserts that the Randers metric defined by Riemannian
metric ã and 1-form b̃ is of Berwald type if and only if b̃ is parallel with respect to ã (cf [1]).
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It is obvious that b̃ is parallel if and only if the corresponding vector field b̃# is parallel with
respect to ã.

Lemma 1.2. Let F be a Randers metric on M defined by the Riemannian metric ã and the
vector field b̃#. Then (M,F ) is of Berwald type if and only if b̃# is parallel with respect to ã.

1.3. Let us consider the group of isometries of a Randers space (M,F ). Denote this group
by I (M,F ). Let (M,F1) be an arbitrary Finsler space and d be the distance function of
(M,F1) (cf [1]). Let φ be a one-to-one mapping of M onto itself which preserves d. In [5] we
have proved that φ is differentiable and hence a differmorphism. Therefore, it is reasonable
to define the group of isometries of (M,F1) as the set of differmorphisms of M such that
F1(x, y) = F1(φ(x), dφx(y)),∀x ∈ M,y ∈ Tx(M). Denote this group by I (M,F1). It was
proved in [5] that I (M,F1) is a Lie transformation group on M.

Proposition 1.3. Let (M,F ) be a Randers space with F defined by the Riemannian metric ã

and the vector field b̃#. Then the group of isometries of (M,F ) is a closed subgroup of the
group of isometries of the Riemannian manifold (M, ã).

Proof. Let φ be an isometry of (M,F ). Let p ∈ M and denote q = φ(p). For any y ∈ Tp(M)

we have

F(p, y) =
√

ã(p)(y, y) + ã(p)(b̃#, y) = F(q, dφp(y))

= √
ã(q)(dφp(y), dφp(y)) + ã(q)(b#, dφp(y)). (1.2)

Substituting y with −y in (1.2) we obtain√
ã(p)(y, y) − ã(p)(b̃#, y) = √

ã(q)(dφp(y), dφp(y)) − ã(q)(b#, dφp(y)). (1.3)

Taking the summation of (1.2) and (1.3) we get

ã(p)(y, y) = ã(dφp(y), dφp(y)) ã(p)(b̃#, y) = ã(q)(b̃#, dφp(y)).

Thus φ is an isometry with respect to the underlying Riemannian metric ã and for any
p ∈ M, dφp(b̃#|p) = b̃#|φ(p). Therefore I (M,F ) is a closed subgroup of I (M, ã). �

2. Invariant Randers metric on homogeneous manifolds

2.1. Let G/H be a reductive homogeneous manifold (cf Nomizu [6]). Let g = Lie G, h =
Lie H. Fix a decomposition of g:

g = h + m (direct sum ofsubspace) (2.1)

where m is a subspace of g and satisfies

Ad(h)m ⊂ m ∀h ∈ H.

From the results of section 1, we see that to construct invariant Randers metric on G/H ,
we first need to find invariant vector fields on G/H . The following proposition gives a
complete description for invariant vector fields.

Proposition 2.1. There exists a bijection between the set of invariant vector fields on G/H

and the subspace

V = {X ∈ m|Ad(h)X = X,∀h ∈ H }.

Proof. Let π : G → G/H be the natural projection, Lg and Rg be the left and right translations
of G by g, respectively. The mapping π has a differential dπ which maps g onto the tangent
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space To(G/H) to G/H at the original o = {H }. The kernel of dπ is h. The translation
τ(g) : xH → gxH satisfies

π ◦ Lg = τ(g) ◦ π

and since for h ∈ H,π ◦ Rh = π, Ad(g)X = dRg−1 ◦ dLg(X). We have for the differentials

dπ ◦ Ad(h)X = dτ(h)o ◦ dπ(X) X ∈ g.

Thus under the isomorphism g/h � To(G/H) the linear transformation Ad(h) of g/h

corresponds to the linear transformation dτ(h)o of To(G/H).
Now the decomposition g = h + m gives a natural isomorphism

g/h � m.

Under this isomorphism the linear transformation dτ(h)o of To(G/H) corresponds to the
linear transformation Ad(h) of m.

Now given X ∈ V , let X̃o be its image under the isomorphism m � To(G/H). Let g ∈ G

define a tangent vector at gH by

X̃gH = d(τ (g))o(X̃o).

If g1H = gH , then g−1g1 ∈ H . Since Ad(h)X = X,∀h ∈ H , the above argument shows that
dτ(g−1g1)oX̃o = X̃o. Thus dτ(g)oX̃o = dτ(g1)oX̃o. Therefore X̃ is a well-defined vector
field on G/H and it is obviously invariant under the action of G. That the correspondence
X → X̃ is a bijection is easy to verify.

2.2. Let G/H be a reductive homogeneous manifold. By proposition 1.3, the underlying
Riemannian metric of an invariant Randers metric on G/H must be invariant. Therefore we
first fix an invariant Riemannian metric ã on G/H and then consider the invariant Randers
metrics on G/H with the underlying Riemannian metric ã.

The invariant Riemannian metric ã induces an inner product 〈,〉 on g which satisfies

〈Ad(h)X, Ad(h)Y 〉 = 〈X, Y 〉 X, Y ∈ g h ∈ H. (2.2)

The subspace m in (2.1) can be taken to be the orthogonal complement of h with respect to
this inner product. �

Theorem 2.2. Let ã be an invariant Riemannian metric on G/H . Let m be the orthogonal
complement of h in g with respect to the inner product induced on g by ã. Then there exists
a bijection between the set of all invariant Randers metrics on G/H with the underlying
Riemannian metric ã and the set

V1 = {X ∈ m|Ad(h)X = X, 〈X,X〉 < 1,∀h ∈ H }.
And for any X ∈ V1, the corresponding Randers metric is of Berwald type. Furthermore, if
G/H is not flat and 0 �= X ∈ V1, then the corresponding Randers metric is neither Riemannian
nor locally Minkowskian.

Proof. Let X ∈ V1. By proposition 2.1, X corresponds to an invariant vector field X̃ on G/H .
Since X̃ is invariant under the action of G, we have

ã(gH)(X̃, X̃) = ã(H)(X̃, X̃) = 〈X,X〉 < 1.

By lemma 1.1 we can define a Randers metric FX on G/H by

FX(gH, y) =
√

ã(gH)(y, y) + ã(gH)(X̃, y), y ∈ TgH (G/H).

FX is obviously invariant under the action of G. It is easily seen that the correspondence
X → FX is a bijection.
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For any X ∈ V1,G acts transitively on G/H as the isometries of the corresponding
Randers metric. Therefore G/H with the corresponding Randers metric is of Berwald type.
By theorem 11.5.1 of [1], the vector field X̃ is parallel with respect to ã. (This can be
proved directly using the formula for the Levi-Civita connection of ã (cf Nomizu [6]).) By
proposition 11.6.1 of [1] (p 305), if ã is not flat and X �= 0, then the Randers metric is neither
Riemannian nor locally Minkowskian. �

3. Geodesics and flag curvatures

Let G/H be a homogeneous manifold with invariant Riemannian metric g and F be an invariant
Randers metric defined by the Ad(H)-invariant vector X, where g(X,X) < 1. In this section
we give a description for geodesics and curvatures of F.

It is an important fact that the connection of F is the same as that of the corresponding
Riemannian metric g (cf [1]). Therefore the geodesics of F is the same as that of g. According
to Nomizu [6], the geodesics through the original o = {H } are the curves

γY : t → exp tY · o (Y ∈ m).

The following theorem gives the formula for the flag curvatures.

Theorem 3.1. Let Y be a nonzero vector in m and P be a plane in m containing Y. Then the
flag curvature of the flag (P, Y ) in To(G/H) is given by

K(P, Y ) = 2
√

g(Y, Y )

2
√

g(Y, Y ) + g(X, Y )
K(P )

where K(P ) is the Riemannian curvature of P of the Riemannian metric g, and

K(P ) = g([[Y,U ]h, Y ], U)

g(U,U)g(Y, Y ) − g2(U, Y )

where U is any vector in P such that span(Y,U) = P and [Y,U ]h is the orthogonal projection
of [Y,U ] to h.

Proof. According to Nomizu [6], the curvature tensor of F (and g) is

R(U, V )W = −[[U,V ]h,W ].

Therefore

K(P, Y ) = gY ([[Y,U ]h, Y ], U)

gY (Y, Y )gY (U,U) − g2
Y (U, Y )

.

Now for s, t ∈ R,

F 2(Y + sU + tV ) = g(Y + sU + tV , Y + sU + tV ) + g2(X, Y + sU + tV )

+ 2
√

g(Y + sU + tV , Y + sU + tV )g(X, Y + sU + tV ).

By a direct computation we get

gY (U, V ) = g(U, V ) +
1

2

1√
g(Y, Y )

g(U, V )g(X, Y )

= g(U, V )

(
1 +

g(X, Y )

2
√

g(Y, Y )

)
.
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Therefore the flag curvature is

K(P, Y ) = gY ([[Y,U ]h, Y ], U)

gY (Y, Y )gY (U,U) − g2
Y (U, Y )

=
(
1 + g(X,Y )

2
√

g(Y,Y )

)
g([[Y,U ]h, Y ], U)(

1 + g(X,Y )

2
√

g(Y,Y )

)2
(g(Y, Y )g(U,U) − g2(U, Y ))

= 2
√

g(Y, Y )

2
√

g(Y, Y ) + g(X, Y )

g([[Y,U ]h, Y ], U)

g(Y, Y )g(U,U) − g2(U, Y )
.

Combining this with the formula in Nomizu [6] completes the proof. �

Corollary 3.2. Let G be a compact connected Lie group and H be a closed subgroup of G,
Lie G = g, Lie H = h. Let g be a G-invariant Riemannian metric on G/H and m be the
orthogonal complement of h in g. Suppose the set

V1 = {X ∈ m|Ad(h)X = X,∀h ∈ H, 0 < g(X,X) < 1}
is not empty. Then there exists invariant Randers metrics on G/H . Let F be the invariant
Randers metric defined by X ∈ V1. Then for Y ∈ m, g(Y, Y ) = 1, and a plane P in m

containing Y. The flag curvature of F of the flag (P, Y ) is given by

K(P, Y ) = 2

2 + g(X, Y )

(
1

4
g([U, Y ], [U, Y ]) +

3

4
g([U, Y ]h, [U, Y ]h)

)
where U is any unit vector in P orthogonal to Y.

Proof. According to Helgason [7], the sectional curvature of (G/H, g) at P is

K(P ) = 1
4g([U, Y ], [U, Y ]) + 3

4g([U, Y ]h, [U, Y ]h).

Therefore the corollary follows. �

4. Some examples

4.1. Let G be a real Lie group. Then G can be viewed as a reductive homogeneous manifold
with H = {e} and m = g. Fix a left-invariant Riemannian metric ã on G. ã induces an
inner product 〈,〉 on g. The subspace V in proposition 2.1 is just g. Therefore the set V1 in
theorem 3.2 is

V1 = {X ∈ g|〈X,X〉 < 1}.
For any X ∈ V there corresponds a left-invariant Randers metric on G. If ã is not flat and
X �= 0, then the corresponding Randers space is neither Riemannian nor locally Minkowskian
of Berwald type.

We can also consider the right-invariant and even bi-invariant Randers metric on Lie
groups. We omit the details.

4.2. Let us consider symmetric spaces. Let G/K be a global symmetric space with G
semisimple. In general, there may not exist an invariant Randers metric with the underlying
Riemannian metric of G/K . In fact, using theorem 2.2 we can easily prove that if n � 2, n �= 3,
then there does not exist an invariant Randers metric on Sn = SO(n + 1)/SO(n). Note that
S3 is a compact Lie group, so there exists a bi-invariant Randers metric on it.

The situation will change a lot if we shift the subgroup K to a proper closed subgroup of it.
Let g = k + p be the decomposition of g corresponding to the symmetric pair (G,K). Let p1

be a proper subspace of p. The group K has an orthogonal representation on p. Let K1 be the
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subgroup of K which leaves each point of p1 fixed. The homogeneous manifold G/K1 admits
an invariant Riemannian metric such that G/K1 is a submersion of the Riemannian manifold
G/K . Since G/K is not flat, G/K1 is not flat. By theorem 2.2, there exists an invariant
Randers metric on G/K1 which makes it into a Berwald space which is neither Riemannian
nor locally Minkowskian.

Example 4.2. Consider Sn = SO(n + 1)/SO(n), n � 4. We have g = so(n + 1), k = so(n),

p =
{(

0 α

−αt 0

) ∣∣∣∣ α ∈ R
n

}
. (3.2)

For an integer q, 1 � q � n − 1, let pq be the subspace of p with

α =
(

αn−q

0

)
αn−q ∈ R

n−q

in (3.2). The subgroup of SO(n) which leaves each point of pq fixed is SO(q) ↪→ SO(n) as

SO(q) =
{(

I 0
0 A

) ∣∣∣∣ A ∈ SO(q)

}
.

Then by the above argument, there exists an invariant Randers metric on M = SO(n +
1)/SO(q) which is neither Riemannian nor locally Minkowskian. Note that

SO(n + 1)/SO(q) = (SO(n + 1)/SO(q) × SO(p)) × SO(p)

where p = n + 1 − q. Therefore M is a fibre bundle over the Grassmannian manifold Gp,q(R)

with fibres SO(p).

4.3. Let us give another explanation of the example in the book of Bao, Chern and Shen ([1],
p 306). The underlying manifold is M = Sn × S1, n � 2. The Riemannian metric ã is the
product of the standard ones on Sn and S1. Use the usual spherical coordinate on S1, i.e., let
t be such that (cos t, sin t, 0) parametrizes S1. Let b̃ = εdt, 0 < ε < 1. Then b̃ is globally
defined on M and a Randers metric can be defined by ã and b̃ which makes M into a Berwald
space which is neither Riemannian nor locally Minkowskian.

The manifold M with Riemannian metric ã is a homogeneous Riemannian manifold
(actually it is a globally symmetric space). We can write

M = (SO(n + 1)/SO(n)) × S1 = (SO(n + 1) × S1)/(SO(n) × {e}) = G/H

where e is the unity element of S1. The Lie algebra of G is g = so(n + 1) + R
1 (direct sum of

ideals) and Lie H = h = so(n). We can take

m = m1 + R
1

where

m1 =
{(

0 α

−αt 0

) ∣∣∣∣ α ∈ R
n

}
.

The action of H on m is

Ad(h)(A, t) = (hAh−1, t) A ∈ m1 t ∈ R
1 h ∈ H.

Therefore the subspace V in proposition 2.1 is

V = {(0, t)|t ∈ R
1}

and the set V1 = {(0, ε)|, ε < 1}. Therefore by theorem 2.2, for each 0 < ε < 1 we can
construct a globally defined invariant Randers metric of Berwald type on M which is neither
Riemannian nor Minkowskian.
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5. Conclusions

From the results of sections 1–4, we see that it is generally not difficult to find invariant Randers
metrics on a homogeneous Riemannian manifold G/H . In fact, let g = h + m, where g = Lie
G, h = Lie H and m is the orthogonal complement of h in g with respect to the Riemannian
metric on G/H . Then theorem 2.2 asserts that there exist invariant Randers metrics on G/H

if and only if the adjoint representation of H on m has nonzero fixed points. This condition
is generally easy to satisfy. Since Randers space has many physical applications, it is hopeful
that the results of this paper will be useful in the study of some physical problems. The
formulae of geodesics and flag curvatures in section 3 are essential in geometry because there
are very few cases for which we can give an explicit description. The method of this paper may
also be useful when we study special Finsler spaces (e.g., those with constant flag curvatures,
cf [1]).
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